Crystalline Inclusion Compounds of 2,2'-Dihydroxy-1,1'-binaphthyl with Alkali Metal Hydroxides and Ammonia

Fumio TODA, Koichi TANAKA, Man Chaun WONG, and Thomas C. W. MAK*+

Department of Industrial Chemistry, Faculty of Engineering,

Ehime University, Matsuyama 790

Department of Chemistry, The Chinese University of Hong Kong,

Shatin, New Territories, Hong Kong

2,2'-Dihydroxy-1,1'-binaphthyl, $C_{20}H_{14}O_2$, forms crystalline inclusion compounds of stoichiometries $1\frac{1}{2}C_{20}H_{14}O_2 \cdot 3MOH \cdot 8H_2O$ (M = Li,Na,K), $C_{20}H_{14}O_2 \cdot CSOH \cdot 6H_2O$, and $2C_{20}H_{14}O_2 \cdot 2NH_3 \cdot CH_3OH$. In the crystal structure of the NH₃ complex, the three molecular components are interlinked by hydrogen bonds to form a column with a hydrophilic stem and a hydrophobic sheath.

2,2'-Dihydroxy-1,1'-binaphthyl ($C_{20}H_{14}O_2$, commonly known as bis- β -naphthol), 1, has been found to be a very effective host compound for the isolation 1 and optical resolution 2 of a wide range of organic guest species through the formation of crystalline inclusion complexes. 3 We now report the preparation and structural characterization of a series of new inclusion compounds (formulas 2 to 6) of 1 with alkali metal hydroxides and ammonia.

$$C_{20}^{H_{14}O_{2}}$$
 (1)

2
 $^{1\frac{1}{2}C}$ 20 1 4 0 2 3 LiOH 4 8H 2 O

$$^{4}_{2}$$
 $^{1}_{2}$ C $_{20}$ H $_{14}$ O $_{2}$ ·3KOH·8H $_{2}$ O

$$^{5}_{\text{0}}$$
 $^{\text{C}}_{20}^{\text{H}}_{14}^{\text{O}}_{2}^{\text{ •CsOH • 6H}}_{2}^{\text{O}}$

6
 2 2 2 14 0 2 2 1 2 2 1 2 3 4 2 3 4 2 3 4 2 3 4 4 3 4 4 3 4 4 4 5 6 3 4 4 5

Typical procedures in preparing the complexes are as follows. When a mixture of $\frac{1}{3}$ (1 g) and 20% aqueous NaOH solution (5 ml) was kept at room temperature for 12 h, colorless prisms (1.5 g, mp not clear) of $\frac{3}{3}$ was obtained.

2070 Chemistry Letters, 1987

In a similar manner, 6 was obtained as colorless prisms (1.7 g, mp not clear) when a mixture of $\frac{1}{3}$ (1 g) and 5 ml of methanol saturated with ammonia was kept at room temperature for 12 h.

Compounds $\frac{2}{3}$, $-\frac{5}{3}$ are air-sensitive but may be kept for weeks in a sealed tube without apparent decomposition. The alkali metal contents of $\frac{2}{3}$, $-\frac{5}{3}$ were determined by the flame emission technique using a Varian AA-4 atomic absorption spectrophotometer. In each instance a freshly prepared sample was quickly dried by pressing between filter paper and immediately weighed and dissolved for triplicate analysis. In the determination of cesium, a known excess of potassium was added as an ionization suppressor to enhance its emission intensity in the air-acetylene flame. The experimental results (% by weight: Li, 3.57; Na 9.92; K, 15.72; Cs 24.19) obtained for $\frac{2}{3}$ were consistent with those (Li, 3.23; Na, 9.94; K, 15.81; Cs 24.42) calculated from the stoichiometric formulas $\frac{1}{3}$ C20 $\frac{1}{3}$ H4 $\frac{0}{2}$ ·3MOH·8H2O (M = Li,Na,K) and C20 $\frac{1}{3}$ H4 $\frac{0}{2}$ ·CSOH·6H2O. The formulation of the isomorphous sodium and potassium complexes was substantiated by X-ray crystallographic analysis, but the lithium and cesium complexes did not yield suitable crystals for unit-cell and density measurements.

X-Ray crystallographic studies of 3, 4, and 6 proceeded in the same manner. Densities were determined by flotation in a mixture of hexane and carbon tetrachloride. A selected crystal was sealed inside a 0.5 mm Lindemann glass capillary, and intensity data were collected on a Nicolet R3m diffractometer using Mo- \underline{K}_{α} radiation (λ = 0.71069 Å) as described previously. For 3 and 4 the intensities declined rapidly with increasing Bragg angle.

Crystal data: $\ 3$, FW = 693.81, tetragonal, space group $\ \underline{14}_1/\underline{a}$, $\ \underline{a}$ = 19.298(5), $\ \underline{c}$ = 37.357(8) $\ A$, $\ \underline{v}$ = 13912(6) $\ A^3$, $\ \underline{z}$ = 16, $\ \underline{F}$ (000) = 5839, $\ \underline{D}_m$ = 1.341, $\ \underline{D}_c$ = 1.325 g cm⁻³, crystal size 0.40 x 0.24 x 0.20 mm³, $\ \mu$ = 1.27 cm⁻¹, $2\theta_{max}$ = 40°, 2401 unique reflections, 1450 observed, $\ \underline{R}$ = 0.218; $\ 4$, FW = 741.94, $\ \underline{a}$ = 19.303(6), $\ \underline{c}$ = 37.549(8) $\ A$, $\ \underline{V}$ = 13991(7) $\ A^3$, $\ \underline{F}$ (000) = 6223, $\ \underline{D}_m$ = 1.393, $\ \underline{D}_c$ = 1.409 g cm⁻³, crystal size 0.42 x 0.40 x 0.32 mm³, $\ \mu$ = 4.49 cm⁻¹, $2\theta_{max}$ = 40°, 2554 unique data, 1617 observed, $\ \underline{R}$ = 0.275; $\ \xi$, FW = 638.76, monoclinic, space group $\ \underline{P2}_1/\underline{c}$, $\ \underline{a}$ = 11.136(2), $\ \underline{b}$ = 19.853(5), $\ \underline{c}$ = 15.314(3) $\ A$, $\ \beta$ = 91.36(1)°, $\ \underline{V}$ = 3384.7(9) $\ A^3$, $\ \underline{z}$ = 4, $\ \underline{F}$ (000) = 1352, $\ \underline{D}_m$ = 1.250, $\ \underline{D}_c$ = 1.254 g cm⁻³, crystal size 0.56 x 0.52 x 0.46 mm³, $\ \mu$ = 0.87 cm⁻¹, 4848 unique reflections, 3671 observed, $\ \underline{R}$ = 0.059. The structures were solved by direct phase determination guided by negative quartets. All computations were performed on a Data General Nova 3/12 minicomputer with the SHELXTL package. 6,7)

In the crystal structure of \mathfrak{J} and \mathfrak{J} , one host molecule (\mathfrak{J}) occupies Wyckoff position $8(\underline{e})$ of site symmetry 2, whereas the other is in a general position. The structure is highly disordered, such that two alkali metal atoms and three of the water/hydroxide oxygen atoms failed to appear in a difference Fourier map. The single ordered metal atom is coordinated to a phenolic oxygen atom and two water/hydroxide oxygen atoms, but other atoms occupying the remaining ligand sites could not be located. The occurrence of liquid-like regions in the solid lattice may be a common structural feature of the newly-discovered crystalline inclusion compounds formed by phenol- and propynol-type hosts with alkali metal and ammonium hydroxides. 8)

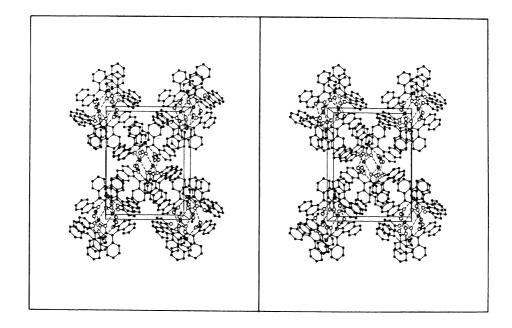


Fig. 1. Stereodrawing of the crystal structure of $2C_{20}H_{14}O_2 \cdot 2NH_3 \cdot CH_3OH$, &. The origin of the unit cell lies at the upper left corner, with <u>a</u> pointing towards the reader, <u>b</u> downwards, and <u>c</u> from left to right. The blackened, shaded, and open cirles represent C, N, and O atoms, respectively. Hydrogen bonds are indicated by broken lines.

The crystal structure of & is shown in Fig. 1. The phenolic groups, ammonia molecules, and methanol molecules are interlinked by hydrogen bonds to form a column with a hydrophilic stem and a hydrophobic sheath. Geometrical details of the hydrogen bonding in the stem are illustrated in Fig. 2. The crystal lattice is constructed from a lateral packing of such infinite columns, all of which are oriented in the direction of the a axis.

Atom numbering scheme for the asymmetric unit in 6.

2072 Chemistry Letters, 1987

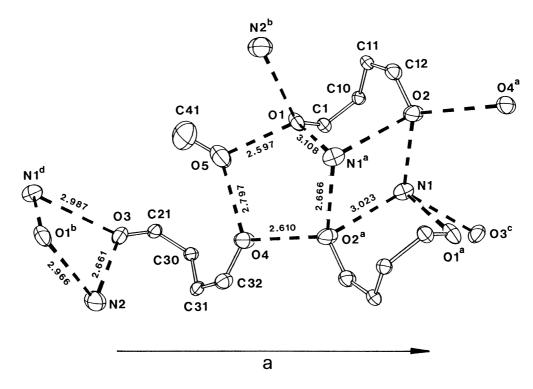


Fig. 2. Details of the hydrogen bonding in the hydrophilic stem of a column in the crystal structure of \S . For clarity the aromatic rings have been omitted, so that molecule $\frac{1}{\lambda}$ [torsion angles $C(1)-C(10)-C(11)-C(12)=86.8(3)^\circ$ and $C(21)-C(30)-C(31)-C(32)=-101.3(3)^\circ$] appears like 1,4-butanediol. Symmetry transformations: a = 1-x, 1-y, 1-z; a = 1-x, 1-

We thank the Ministry of Education, Science and Culture for Grant-in-Aid for Special Project Research (Grant No. 61134038) and partial financial support from Dr. Ma Pui Han (Grant No. 183902000).

References

- 1) F. Toda, K. Tanaka, G. Ulibarri Daumas, and M.C. Sanchez, Chem. Lett., 1983, 1521.
- 2) F. Toda, K. Tanaka, and S. Nagamatsu, Tetrahedron Lett., 25, 4929 (1984).
- 3) F. Toda, K. Tanaka, and T.C.W. Mak, Chem. Lett., 1984, 2085.
- 4) F. Toda, K. Tanaka, and T.C.W. Mak, Bull. Chem. Soc. Jpn., <u>58</u>, 2221 (1985).
- 5) G.T. DeTitta, J.W. Edmonds, D.A. Langs, and H. Hauptman, Acta Crystallogr., Sect. A, 31, 472 (1975).
- 6) G.M. Sheldrick, "Computational Crystallography," ed by D. Sayre, Oxford University Press, New York (1982), p. 506.
- 7) The atomic coordinates have been deposited with the Cambridge Crystallographic Data Centre. Structure factors are obtainable from the last author.
- 8) F. Toda, "Molecular Inclusion and Molecular Recognition Clathrates I,"
 (Topics in Current Chemistry, Vol. 140), ed by E. Weber, Springer-Verlag,
 Berlin (1987), pp. 43-69.

 (Received July 20, 1987)